
Self Balancing Car with Wemos D1
R32

Here are my notes on this project. We are using the Keystudio KS0193 two wheel self-balancing car
kit to start with. Reference it for documentation on the car. These notes concern the modifications I
did to it. More documentation is available on fweb.

The Arduino Uno car uses is not good enough for the Control class to use unless really in a pinch. It
isn’t fast enough to debug the Kalman filter program and needs more memory. The Wemos D1 R32
uses the same form factor as the Uno and works with some of the code. The Keystudio KS0377 shield
was retained. The following changes are needed:

• The encoders need to be quadrature. There are quadrature encoders on the hardware but not in
the Keystudio software. We added that using the ESP32Encoder library. The encoder only
demo program is called Encoder.ino,

• The ATMEGA328 PWM code had to be modified to use the ESP32. We chose to use the easier
LEDC PWM hardware instead of the fancy PWM code that has punch through (short from VDD
to GND) because the TB6612FNG has that feature in the hardware and it is used in the KS0377
arduino shield used to drive the motors etc. The schematic shows what pins to connect, and the
D1 R32 uses ‘D3’ to denote ‘IO25’ which I think could be called 25 as well. The pins had to be
listed in the call to the encoder library. See the code and the comparison pinout for the original
Uno and the D1 R32 on the next page.

• The motor drive had to be connected in code. The simple test code for the motors only is called
WemosD1KeyCarMotorDrive. Then this was integrated with the encoder code above to create
WemosD1KeyCarMotorDriveEncoder which shows the speed and position of the wheels (in
some as yet unknown units) and you can plot it using the Arduino plot window, and see the data
in the Serial Monitor.

• The MPU-6050 uses I2C, and is wired to IO36 and IO39 on the D1 R32, but those pins are for
input only, so cannot be remapped to be used for the I2C lines. Remapping is discussed here.
Therefore, jumpers must extend between IO39 pin to SCL and IO36 and SDA respectively. On
the Uno these were the same were wired together to the same pins. There are holes so these
could be soldered together on the shield if desired. The library used by Keystudio and retained
is the MPU6[50 library. The software to test this is the MPU_6050_ESP32_Test. The program
that integrates the MPU-6050 with the rest of the things is called
WemosD1KeyCarMotorEncoodersAccel.

• You can see the angle and Kalman calculated angle converge as well as the gyro_x and the
Kalman filtered gyro_x using the Kalman_Test program and the serial plotter.

This may be enough software to give students to let them make software to control the car.

https://wiki.keyestudio.com/Ks0193_keyestudio_Self-balancing_Car
https://fweb.wallawalla.edu/~frohro/ClassHandouts/?dir=Control%20Systems/Selfbalancing%20Car
https://wiki.keyestudio.com/Ks0377_Keyestudio_Balance_Car_Shield_V3
https://randomnerdtutorials.com/esp32-i2c-communication-arduino-ide/#:~:text=When%20using%20the%20ESP32%20with,to%20use%20any%20other%20pins.
https://www.arduinolibraries.info/libraries/mpu6050
https://randomnerdtutorials.com/esp32-pinout-reference-gpios/
https://randomnerdtutorials.com/esp32-pinout-reference-gpios/
https://github.com/madhephaestus/ESP32Encoder

Figure 1: Arduino Uno and Wemos D1 R32 Pin-Outs for Comparison

Figure 2: KS0377 Shield and Wemos D1 R32 Schematic Diagram

